Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Science ; 373(6552)2021 07 16.
Article in English | MEDLINE | ID: covidwho-1262378

ABSTRACT

The COVID-19 pandemic has revealed the pronounced vulnerability of the elderly and chronically ill to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced morbidity and mortality. Cellular senescence contributes to inflammation, multiple chronic diseases, and age-related dysfunction, but effects on responses to viral infection are unclear. Here, we demonstrate that senescent cells (SnCs) become hyper-inflammatory in response to pathogen-associated molecular patterns (PAMPs), including SARS-CoV-2 spike protein-1, increasing expression of viral entry proteins and reducing antiviral gene expression in non-SnCs through a paracrine mechanism. Old mice acutely infected with pathogens that included a SARS-CoV-2-related mouse ß-coronavirus experienced increased senescence and inflammation, with nearly 100% mortality. Targeting SnCs by using senolytic drugs before or after pathogen exposure significantly reduced mortality, cellular senescence, and inflammatory markers and increased antiviral antibodies. Thus, reducing the SnC burden in diseased or aged individuals should enhance resilience and reduce mortality after viral infection, including that of SARS-CoV-2.


Subject(s)
Aging , Cellular Senescence/drug effects , Coronavirus Infections/mortality , Flavonols/therapeutic use , Pathogen-Associated Molecular Pattern Molecules/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/immunology , COVID-19/mortality , Cell Line , Coronavirus Infections/immunology , Dasatinib/pharmacology , Dasatinib/therapeutic use , Female , Flavonols/pharmacology , Gene Expression Regulation , Humans , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL , Murine hepatitis virus/immunology , Quercetin/pharmacology , Quercetin/therapeutic use , Receptors, Coronavirus/genetics , Receptors, Coronavirus/metabolism , Specific Pathogen-Free Organisms , COVID-19 Drug Treatment
2.
Mediators Inflamm ; 2021: 9979032, 2021.
Article in English | MEDLINE | ID: covidwho-1202118

ABSTRACT

Coronaviruses (CoVs) are enveloped and harbor an unusually large (30-32 kb) positive-strand linear RNA genome. Highly pathogenic coronaviruses cause severe acute respiratory syndrome (SARS) (SARS-CoV and SARS-CoV-2) and Middle East respiratory syndrome (MERS) (MERS-CoV) in humans. The coronavirus mouse hepatitis virus (MHV) infects mice and serves as an ideal model of viral pathogenesis, mainly because experiments can be conducted using animal-biosafety level-2 (A-BSL2) containment. Human thymosin beta-4 (Tß4), a 43-residue peptide with an acetylated N-terminus, is widely expressed in human tissues. Tß4 regulates actin polymerization and functions as an anti-inflammatory molecule and an antioxidant as well as a promoter of wound healing and angiogenesis. These activities led us to test whether Tß4 serves to treat coronavirus infections of humans. To test this possibility, here, we established a BALB/c mouse model of coronavirus infection using mouse CoV MHV-A59 to evaluate the potential protective effect of recombinant human Tß4 (rhTß4). Such a system can be employed under A-BSL2 containment instead of A-BSL3 that is required to study coronaviruses infectious for humans. We found that rhTß4 significantly increased the survival rate of mice infected with MHV-A59 through inhibiting virus replication, balancing the host's immune response, alleviating pathological damage, and promoting repair of the liver. These results will serve as the basis for further application of rhTß4 to the treatment of human CoV diseases such as COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Murine hepatitis virus , Thymosin/therapeutic use , Animals , Antibodies, Viral/blood , C-Reactive Protein/analysis , Cytokines/blood , Female , Humans , Mice , Mice, Inbred BALB C , Murine hepatitis virus/immunology , RNA, Viral/analysis , Recombinant Proteins/therapeutic use , Virus Replication/drug effects
3.
Eur J Immunol ; 51(5): 1062-1070, 2021 05.
Article in English | MEDLINE | ID: covidwho-1121340

ABSTRACT

Coronaviruses (CoVs) represent enveloped, ss RNA viruses with the ability to infect a range of vertebrates causing mainly lung, CNS, enteric, and hepatic disease. While the infection with human CoV is commonly associated with mild respiratory symptoms, the emergence of SARS-CoV, MERS-CoV, and SARS-CoV-2 highlights the potential for CoVs to cause severe respiratory and systemic disease. The devastating global health burden caused by SARS-CoV-2 has spawned countless studies seeking clinical correlates of disease severity and host susceptibility factors, revealing a complex network of antiviral immune circuits. The mouse hepatitis virus (MHV) is, like SARS-CoV-2, a beta-CoV and is endemic in wild mice. Laboratory MHV strains have been extensively studied to reveal coronavirus virulence factors and elucidate host mechanisms of antiviral immunity. These are reviewed here with the aim to identify translational insights for SARS-CoV-2 learned from murine CoVs.


Subject(s)
Adaptive Immunity/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Murine hepatitis virus/immunology , Murine hepatitis virus/pathogenicity , Animals , Disease Models, Animal , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism/physiology
4.
J Neurovirol ; 27(2): 197-216, 2021 04.
Article in English | MEDLINE | ID: covidwho-1080993

ABSTRACT

The pandemic caused by SARS-CoV-2 has caused widespread infection and significant mortality across the globe. Combined virology perspective of SARS-CoV-2 with a deep-rooted understanding of pathophysiological and immunological processes underlying the clinical manifestations of COVID-19 is of prime importance. The characteristic symptom of COVID-19 is respiratory distress with diffused alveolar damage, but emerging evidence suggests COVID-19 might also have neurologic consequences. Dysregulated homeostasis in the lungs has proven to be fatal, but one cannot ignore that the inability to breathe might be due to defects in the respiratory control center of the brainstem. While the mechanism of pulmonary distress has been documented in the literature, awareness of neurological features and their pathophysiology is still in the nascent state. This review makes references to the neuro-immune axis and neuro-invasive potential of SARS-CoV and SARS-CoV2, as well as the prototypic H-CoV strains in human brains. Simultaneously, considerable discussion on relevant experimental evidence of mild to severe neurological manifestations of fellow neurotropic murine-ß-CoVs (m-CoVs) in the mouse model will help understand the underpinning mechanisms of Neuro-COVID. In this review, we have highlighted the neuroimmunopathological processes in murine CoVs. While MHV infection in mice and SARS-CoV-2 infection in humans share numerous parallels, there are critical differences in viral recognition and viral entry. These similarities are highlighted in this review, while differences have also been emphasized. Though CoV-2 Spike does not favorably interact with murine ACE2 receptor, modification of murine SARS-CoV2 binding domain or development of transgenic ACE-2 knock-in mice might help in mediating consequential infection and understanding human CoV2 pathogenesis in murine models. While a global animal model that can replicate all aspects of the human disease remains elusive, prior insights and further experiments with fellow m-ß-CoV-induced cause-effect experimental models and current human COVID-19 patients data may help to mitigate the SARS-CoV-2-induced multifactorial multi-organ failure.


Subject(s)
COVID-19/pathology , Disease Models, Animal , Murine hepatitis virus/pathogenicity , Neuroimmunomodulation/physiology , Animals , COVID-19/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Humans , Mice , Murine hepatitis virus/immunology , SARS-CoV-2
5.
Immunol Lett ; 217: 25-30, 2020 01.
Article in English | MEDLINE | ID: covidwho-888577

ABSTRACT

In a previous work we demonstrated that inhibition of mouse indoleamine 2,3-dioxygenase (IDO) by methyltryptophan (MT) exacerbated the pathological actions of mouse hepatitis virus (MHV-A59) infection, suggesting that tryptophan (TRP) catabolism was involved in viral effects. Since there is a second enzyme that dioxygenates TRP, tryptophan-2, 3-dioxygenase (TDO), which is mainly located in liver, we decided to study its role in our model of MHV-infection. Results showed that in vivo TDO inhibition by LM10, a derivative of 3-(2-(pyridyl) ethenyl) indole, resulted in a decrease of anti- MHV Ab titers induced by the virus infection. Besides, a reduction of some alarmin release, i.e, uric acid and high-mobility group box1 protein (HMGB1), was observed. Accordingly, since alarmin liberation was related to the expression of autoantibodies (autoAb) to fumarylacetoacetate hydrolase (FAH), these autoAb also diminished. Moreover, PCR results indicated that TDO inhibition did not abolish viral replication. Furthermore, histological liver examination did not reveal strong pathologies, whereas mouse survival was hundred percent in control as well as in MHV-infected mice treated with LM10. Data presented in this work indicate that in spite of the various TDO actions already described, specific TDO blockage could also restrain some MHV actions, mainly suppressing autoimmune reactions. Such results should prompt further experiments with various viruses to confirm the possible use of a TDO inhibitor such as LM-10 to treat either viral infections or even autoimmune diseases triggered by a viral infection.


Subject(s)
Autoimmune Diseases/enzymology , Autoimmunity/drug effects , Coronavirus Infections/enzymology , Coronavirus Infections/immunology , Liver/enzymology , Murine hepatitis virus/immunology , Tryptophan Oxygenase/antagonists & inhibitors , Tryptophan Oxygenase/metabolism , Alarmins/metabolism , Animals , Autoantibodies/drug effects , Autoantibodies/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/virology , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , HMGB1 Protein/blood , HMGB1 Protein/metabolism , Hydrolases/immunology , Indoles/therapeutic use , Liver/drug effects , Liver/immunology , Liver/pathology , Mice , Mice, Inbred BALB C , Murine hepatitis virus/drug effects , Murine hepatitis virus/growth & development , Tryptophan/metabolism , Tryptophan Oxygenase/genetics , Uric Acid/blood , Uric Acid/metabolism , Virus Replication/drug effects , Virus Replication/immunology
6.
Glia ; 68(11): 2345-2360, 2020 11.
Article in English | MEDLINE | ID: covidwho-361267

ABSTRACT

The present study examines functional contributions of microglia in host defense, demyelination, and remyelination following infection of susceptible mice with a neurotropic coronavirus. Treatment with PLX5622, an inhibitor of colony stimulating factor 1 receptor (CSF1R) that efficiently depletes microglia, prior to infection of the central nervous system (CNS) with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in increased mortality compared with control mice that correlated with impaired control of viral replication. Single cell RNA sequencing (scRNASeq) of CD45+ cells isolated from the CNS revealed that PLX5622 treatment resulted in muted CD4+ T cell activation profile that was associated with decreased expression of transcripts encoding MHC class II and CD86 in macrophages but not dendritic cells. Evaluation of spinal cord demyelination revealed a marked increase in white matter damage in PLX5622-treated mice that corresponded with elevated expression of transcripts encoding disease-associated proteins Osteopontin (Spp1), Apolipoprotein E (Apoe), and Triggering receptor expressed on myeloid cells 2 (Trem2) that were enriched within macrophages. In addition, PLX5622 treatment dampened expression of Cystatin F (Cst7), Insulin growth factor 1 (Igf1), and lipoprotein lipase (Lpl) within macrophage populations which have been implicated in promoting repair of damaged nerve tissue and this was associated with impaired remyelination. Collectively, these findings argue that microglia tailor the CNS microenvironment to enhance control of coronavirus replication as well as dampen the severity of demyelination and influence repair.


Subject(s)
Brain/immunology , Coronavirus Infections/immunology , Host-Pathogen Interactions/immunology , Microglia/immunology , Murine hepatitis virus/immunology , Organic Chemicals/toxicity , Animals , Brain/drug effects , Brain/virology , Coronavirus Infections/chemically induced , Host-Pathogen Interactions/drug effects , Immunity, Cellular/drug effects , Immunity, Cellular/immunology , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/virology
7.
Exp Mol Pathol ; 115: 104474, 2020 08.
Article in English | MEDLINE | ID: covidwho-343529

ABSTRACT

The pathogenesis of viral infections involves an immune response by cytokines, causing a deleterious effect on organ function, in addition to tissue destruction due to viral replication. Clinical symptoms and laboratory findings of the human coronavirus disease COVID-19, caused by the novel coronavirus SARS CoV-2, indicate cytokine involvement. Our laboratory showed that an experimental murine coronavirus (MHV-A59) can be transmitted into the brain by intranasal or intracerebral exposure and that neurovirulence is mediated by cytokine secretion. In this study we investigated which cells in the brain produce cytokines, thus functioning as the brain's innate immune system. Using tissue cultures of microglia, and clonal populations of astrocytes, we found that microglia and type I astrocytes (but not types II and III), produced pro-inflammatory cytokines in response to MHV-A59 infection. A molecularly closely related, non-encephalitic strain of the virus (MHV-2) caused in vitro infection, but without cytokine induction. Furthermore, immunofluorescence and immunohistochemistry revealed that type I astrocytes and microglia have perivascular foot processes necessary for the formation of the perivascular glymphatic system, the anatomical site of the brain's innate immune system. Cytokine secretion by type I astrocytes and microglia, as part of the brain's glymphatic and innate immune system, contributes to the pathogenesis of an encephalitic coronavirus infection, and indicates the rationale for anti-cytokine therapies for COVID-19.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/transmission , Murine hepatitis virus/metabolism , Animals , Astrocytes/immunology , Betacoronavirus , Brain/immunology , Brain/pathology , COVID-19 , Cell Line , Cells, Cultured , Coronavirus/metabolism , Coronavirus Infections/virology , Cytokines/immunology , Humans , Mice , Microglia/immunology , Murine hepatitis virus/immunology , Murine hepatitis virus/pathogenicity , Pandemics , Pneumonia, Viral , SARS-CoV-2 , Virus Replication/immunology , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL